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This consists of two possibilities, namely Fp and F§ 
having the same or opposite signs, so that separating 
out these two, we have 

1 [exp{(lF§l--DlFP])2} 
P(F§; Fp) = V2na2( l_D2  ) 2 a 2 ( l _ D 2  ) 

{_ (IF~I + DIFPI) 2 
2-@p (] ~-D-~ J ]  (A7) 

+ exp 

= [a~(I_D2)] ~. exp - 2o.2 ( l_D2)  

OlFel lEVI 
x cosh [ a ~ ( l _ D 2 )  ] . (A8) 

Since this involves only the magnitudes IF§[ and [Fp] 
it is seen that this is also the distribution, P(F§] ; ]FP[). 

Making the usual transformation in (A8), namely 
w r i t i n g  yN=[FNI/CrN and y~, = [FPle/ap, we obtain ex- 
pression (17) given in the text. 

A P P E N D I X  III  

The desired integral (18) can be written: 

2 [ (1 - D 2) y2 + a2 ~ D 2 y~2 ] 
n a2 (1 - D 2) exp l -  2 0"2 ( 1 -- D 2) / x 

x S °° exp { - [ ( 1 - D  z) a~+a~])~e } cosh [y~vye crl 
o 2 o .2 (1 - D 2) 0 .2 

[Y~eYPO] dyp 
x cosh l(-1-:-- O-~J " 

The integral in (A9) above is of the form 

i ~o exp (-p2x2) (ax) (bx) cosh cosh dx, 
0 

where 

p2 

-] 
(A9) 

( l - D 2 )  a2+a22 

2a22(1-D 2) 

(A10) 

, a=alyMa~, b=y~eD/(1-D2). 

Since we have the relation 

I_1/2(z) = ~ cosh z ,  (A 11) 

(A10) can be written in the form 

fo ~- ~ exp (-p2x2) I_m(ax ) I_l/2(bx ) x dx.  (A 12) 

The integral in (A12) is similar to (A2) considered in 
Appendix I, with the only difference that the order of 
the Bessel function is -½- in the former, while it is 
zero in the latter. Thus, using the same result (A3) of 
Appendix I, (A12) reduces to 

n v - ~ l  ~a2+b2 I ( a b )  
~- -~p2 exp ~-~p~--~I-xl2 ~ • (A13) 

Again making use of (A1)in (A13)and substituting for 
a,  b, p2, etc., we obtain the expression (19) given in 
the text. 
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The Absorption Correction in Crystal Structure Analysis 

BY J. DE MEULENAER AND H. TOMPA 
Union Carbide European Research Associates, Brussels 18, Belgium 

(Received 29 June 1964 and in revised form 15 November 1964) 

An exact method for computing the absorption correction for any polyhedral crystal is described. First 
an analytical formula is derived for the contribution to the diffracted intensity from a tetrahedron in 
which the path length of the rays is a linear function of the coordinates of the diffracting element, and 
it is then shown how the crystal is to be divided into such tetrahedra. A computer program for the 
IBM 1620 machine to compute the absorption correction is described. 

I n t r o d u c t i o n  

In crystal-structure analysis the basic observed quanti- 
ties are the intensities of the hkl refiexions. A number 

of corrections (Lorentz and polarization factors, ab- 
sorption correction) have to be applied to the observed 
intensities before they can be used as the basis of a 
structure determination, The absorption correction 
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takes account of the fact that the intensity of the beams, 
both the incident and the diffracted beam, is lowered 
by absorption on its passage through the crystal; the 
extent of this absorption depends for a given crystal 
on the mean path within the crystal and is thus a func- 
tion of the shape of the crystal and its orientation, in 
other words of h, k, and l. 

No fully satisfactory method of evaluating the ab- 
sorption correction for the general case has so far been 
described; the position up to 1958 is well summarized 
in International Tables for X-ray Crystallography (1959). 
The methods described there are based on numerical 
or graphical approximations, mostly for special cases, 
and are, with one exception, applicable only to the 
two-dimensional case or the equatorial reflexions of 
prisms. The exception is the technique developed by 
Busing & Levy (1957), who use three-dimensional 
numerical integration based on the eight-point Gauss 
formula to evaluate the integral (1) given below. Sands 
(1958), quoted in Zalkin & Sands (1958), has written 
a program for the IBM 650 computer, using essentially 
Busing & Levy's technique, but only for the two- 
dimensional case. Since then, several papers dealing 
with the problem have appeared; Ferrari, Braibanti & 
Tiripicchio (1961) treat again the two-dimensional 
case; for strongly absorbing crystals Fitzwater (1961) 
has evaluated the transmission for crystals of elliptical 
shape by developing the exponential in (1) into a series 
and integrating it term by term. 

It is the purpose of this paper to develop an analytical 
method for the three-dimensional case without making 
any restriction on the value of the absorption and to 
describe its application. 

Let I u be the intensity of the diffracted beam issuing 
from a crystal with absorption coefficient/z and let I0 
be the corresponding intensity for p = 0. Then the trans- 
mission T(=Iu/Io ) is given by T=  A/V, where 

A = f exp ( -  lzL)dV. (1) 

The total path length L equals 11 +lz, where 11 is the 
length of the path of the incident ray from its point 
of entry into the crystal up to the volume element dV 
and lz the corresponding length of the path of the beam 
diffracted in dV. The integration is to be carried out 
over the volume V of the crystal, which we assume to be 
bounded by plane surfaces, i.e. to be a polyhedron; 
we further assume the polyhedron to be convex. The 
basis of our method of computing the integral A is 
to divide the crystal first in a manner similar to that 
used by Howells (1950) into a number of elementary 
polyhedra throughout each of which L is a linear func- 
tion of the coordinates of dV. As each of these poly- 
hedra is convex, each can be subdivided into a number 
of tetrahedra. An analytical expression is derived for 
AT, the contribution from one such tetrahedron and 
from this A can be obtained by summing over all 
tetrahedra. The major part of the work in computing 
A is to find the elementary polyhedra, but the keystone 
of our method is the analytical expression for A T. 

Analytical considerations 

We derive first the expression for A T. We take one of 
the vertices of the tetrahedron as origin of the coordin- 
ates and the three edges passing through this vertex as 
axes of coordinates x, y and z. The tetrahedron is thus 
bounded by the three coordinate planes and a fourth 
plane, whose equation we write in the form 

x y z 
- - + - - + - - =  1. 
b/ V W 

The four vertices are then (0, O, 0), (u, O, 0), (0, v, O) and 
(0, O, w). Since L is assumed to be a linear function of 
the coordinates, we can write 

k t L = g = p x + q y + r z + s  ; 

also dV= Kdx dydz. The sheets of constant attenuation, 
g=const . ,  are not necessarily related in any way to the 
edges or faces of the tetrahedron. Then 

A T = f  exp ( - l t L ) d V = f f f  exp [ - ( p x + q y + r z + s ) ]  

x K dx dy d z = K e x p  (_ s )  lUlV('-x/")12('-x/"-Y/V) 
o do 

x exp ( -  rz)dz exp ( -qy)dy  exp ( - p x ) d x .  

The evaluation of this integral is straightforward; the 
result is obtained in terms of u, v, w, p, q, r, and s. We 
can replace these parameters by the values of g at the 
four vertices 

gl=s,  gz=pu+s,  g3=qv+s,  g4=rw+s  

and by Kuvw = 6 VT. After some algebraic manipulation 
we obtain 

exp ( - g l )  
A T = 6 V T  [ 

(g2 - -  g l ) ( g 3  --  g l ) ( g 4  - -  g l )  

exp ( - gz) exp ( - -  g3)  

+ (gl-g2)(g3-gz)(g4-g2)  + (gl-g3)(g2-g3)(g4-g3) 

exp ( -g4)  } 
+ (gl-g4)(g2--g4)(g3-g4) - " (2) 

i.e. A is a sum of terms, one for each vertex, and de- 
pends, apart from the volume, only on the four g~ 
values. This expression can also be written as the ratio 
of two determinants 

e x p ( - g l )  g~ gx 1 [g~ g~ gl 1 
exp( -g2)  g~gz 1 / ]g~ g~g2 1 

A T = - - 6 V T .  exp(--g3) g] g3 1 / [ g] g] g3 1 
exp ( - - g 4 )  g] g4 1 ]g43 g42 g4 1 

Expression (2) is not suitable for numerical computat- 
ion since one or more of the differences (g~-g~) in the 
denominators can be zero if the plane of constant at- 
tenuation is parallel to one or more edges of the tetra- 
hedron .The following artifices enable us to circumvent 
this difficulty. 

We introduce a function h ( u ) = [ 1 - e x p ( - u ) ] / u .  
Then (2) can be rearranged to give 
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h(g2 - g l )  
AT = 6 VT exp (--gl) (g3--g2)(g4--g2) 

h(g3-gl) h(g4-gl) } 
- (g3-g2)(g4-g3) + (g4-g2)(g4-g3) 

h(Ag2)-h(Ag3) h(Ag3)-h(Ag4) 

= 6 VT exp ( -  g) Ag3 - Ag2 Ag4 - Ag3 
Ag4- AgE 

(3) 
with g=gl, Agt =g~-gl. Now Ag~ =0  presents no pro- 
blem, since h(0) = 1 ; if z~g 3 = zJg 2 (g3 = g2) or zig 4 = Ag3 
(g4=g3), the corresponding fraction in the numerator 
of (3) tends to - h ' ,  where -h'(u)=[1-h(u)]/u-h(u) 
and - h'(0) = ½. Finally, the difficulty arising from Ag2 = 
Ag4(gE=g4) can be circumvented by assuming that the 
g~ are ordered so that g~ < g2 < g3 < g4; in this case g2 = 
g4 implies g2 =g3 and g3 =g4, and the double fraction in 
(3) tends to ½h"(Ag2), with ½h"(0)=~, so that AT= 
VT exp (--g) for gl=g2=g3=g4, as is physically evi- 
dent. 

To compute the transmission T of a crystal for given 
directions of the incident and diffracted rays, it is thus 
necessary to divide it into its Howells polyhedra and 
then to subdivide each of these into tetrahedra. For 
each tetrahedron AT and VT are computed using (3) 
and its differential analogues: and these are cumulated 
to give 

T=CAT/2:VT. 

Geometrical  considerations 

Let us illustrate the procedure on a two-dimensional 
case (Fig. 1); let ABCD represent the crystal and let the 
directions of the incident and diffracted beams be as 
indicated on the diagram. This example also represents 
the case of a prismatic crystal with cross-section ABCD 
for beams as indicated. The incident ray through A and 
the diffracted ray through B divide the parallelogram 
into four Howells polygons, in this case two triangles 
ABR and AQR and two quadrilaterals BCPR and 
DPRQ; after division of the two latter into two triangles 
each, e.g. as indicated by the dotted lines, six triangles 
are obtained. If we consider the direction of the dif- 
fracted beam to be reversed, the distinction between 
incident and diffracted directions becomes irrelevant 
for the purposes of this computation. Each Howells 
polygon is characterized by having all its incident rays 
arriving through one side and all diffracted rays leaving 
through one (possibly even the same) side. 

The vertices of the Howells polygons are the vertices, 
A, B, C, D of the parallelogram, the intersections P, Q 
of the rays through the vertices 'in the light" with sides 
'in the shade', and the intersection R of these rays. We 
shall refer to elements in the light and in the shade as 
being l and s, respectively. 

To compute T on the basis of the preceding argu- 
ments, one could first take a side l with respect to 

direction 1 (l 1) and one l with respect to direction 2 (12), 
evaluate the corresponding Howells polygon, split it 
into triangles and compute the contribution AT,. for 
each triangle; all Howells polygons are obtained by 
combining each side l l  with each side 12 and T is ob- 
tained from the sum of all Arr. It might be preferable 
to evaluate first all possible vertices of Howells poly- 
gons and to select then the sets belonging to successive 
Howells polygons. For more complex crystals some 
combinations of sides will not give a Howells polygon. 

These considerations can be extended easily to the 
three-dimensional case. We illustrate this by the ex- 
ample of a crystal in the shape of a cube (Fig. 2) in 
which the first direction (incident ray) is given by EX, 
the second (diffracted ray reversed) by FU. Each Ho- 
wells polyhedron is the intersection within the crystal 
of two prisms, one based on a face l 1, with generators 
parallel to the first direction, and one based on a face 
12, with generators parallel to the second direction. 
Since there are three faces l 1 (those meeting in E) and 
three 12 (those meeting in F) there can be nine Howells 
polyhedra; in fact, one of them has only an edge in 
common with the crystal. 

Fig.2 shows the division of the cube into the eight 
finite Howells polyhedra. Their vertices are points of 
four different types, apart from the vertices of the 

1 2 

A 

o t5' 

D p 
Fig. 1. Decomposition of a parallelogram into Howells poly- 

gons and triangles; 1 : direction of incident beam, 2: direction 
of diffracted beam. 

A 8 

G 

C 

Fig. 2. Decomposition of a cube into elementary polyhedra. 
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crystal: they may be points at which the ray through 
a vertex I intersects an opposite face s, in other words, 
the projection of a vertex l onto an opposite face s, like 
points X and U; they may be points at which the ray 
through a vertex 1 intersects a plane of light passing 
through an edge l in the other direction, such as T (ray 
through E and plane of light through BF) and S (ray 
through F and plane of light through EH); they may 
be points in which planes of light through an edge l cut 
an opposite edge s, such as Y (intersection of plane 
through EFwith BC), Z (EH and CD), V(BFand AD), 
and W (FG and DH), and finally they may be points at 
which the projections of an edge ll and edge 12 onto 
the same face s 1 and s2 intersect, such as P (intersection 
of HZ and GW) and Q (intersection of AX and BV). 

The vertices of the Howells polyhedra based on the 
different faces l are given in the table below. 

Face 12 ABEF BCFG EFGH 
ll 
ABEF ABQEFT BYXQFT EF 
ADEH AQVETSU VQXZDUSTPW USPWEH 
EFGH EFST XYCZSTFGP EFGHSP 

Computer program 

A computer program (ERA 304) has been written for 
the IBM 1620 data-processing system in the symbolic 
programming language to compute the transmission 
of a crystal of any shape for any directions of the two 
beams. The program works as follows. 

The crystal is assumed to be given in terms of the 
equations of its faces referred to an arbitrary system 
of Cartesian coordinates. An auxiliary program 
(ERA 193) written in FORTRAN computes the coordin- 
ates of the vertices and the coincidences of faces, edges, 
and vertices from the equations of the faces and these 
serve as 'crystal data' for the main program. After they 
have been read, the volume of the crystal is computed 
and the direction cosines of the incident and diffracted 
beams are read; the coordinates of points of types X, 
T, and Y in both directions and then of points of type 
P are computed. The vertices of the polyhedra belong- 
ing to a pair of faces l l  and 12, respectively, are col- 
lected and the Howells polyhedra built up systematic- 
ally: any four points are taken to form the first tetra- 
hedron and further tetrahedra are found by taking suc- 
cessive points. For each tetrahedron, the volume VT 
and the contribution AT to the integral A are com- 
puted and both are cumulated. When all possible com- 
binations of pairs of faces l l and 12 have been exam- 
ined, V=XVT is compared with the volume of the 
crystal computed in the first phase and if the difference 
is within a predetermined limit of precision, T=~rAT/ 
Z'VT is computed and T, V and identifications of the 
crystal and the two directions are punched. 

Owing to the limited storage capacity of the standard 
IBM 1620 computer (20000 decimal digits) all com- 
putations are carried out with four-digit fixed-point 

numbers; accidental coincidences can thus occur and 
some of the Howells polyhedra are then not computed 
correctly. If Z'VT differs significantly from the volume 
first computed the program changes the directions by 
amounts which are physically not significant and the 
computation is repeated, up to a maximum of four 
times; if no agreement is obtained, an error indication 
is punched instead of T. 

The function h(u) of equation (3) is computed by 
expanding it into a series of Chebyshev polynomials; 
the coefficients of this expansion have been obtained 
essentially as described by Clenshaw (1962) from the 
differential equation 

uh'(u) + (1 + u)h(u) = 1 . 

The largest crystal the program can handle in the 
standard 1620 computer must not contain more than 
20 faces or more than 25 vertices. 

Another program (ERA 341) has been written in 
FORTRAN to evaluate the transmission of a parallel- 
ogram in the two-dimensional case represented in Fig. 
1. Equation (4), the two-dimensional analogue of 
equation (3) 

ATr=2FTr exp (--g) h(Ag2)-h(Ag3) 
Ag3 - Ag2 ' (4) 

where FTr is the area of the triangle and ATr its con- 
tribution to the integral A, is used to compute ATr but 
the decomposition of the parallelogram into Howells 
polygons is carried out by a logical sequence of con- 
siderations of the different possibilities. 

The following tests were carried out to confirm that 
the program computes the transmission correctly and 
to obtain an estimate of the average error. 

An imaginary crystal was constructed consisting of 
a prism on a square base and limited above by four 
octahedral planes (9 faces, 13 vertices). It was assumed 
that the crystal belongs to the cubic system, with the 
crystallographic axes parallel to the main axes of the 
crystal and with 2/a=0.36. The directions of the in- 
cident and refracted rays were computed for all 407 
possible sets of hkl with non-negative h and with the 
condition that the two directions make equal angles 
with the c axis, excluding the 00l reflexions, for which 
the above condition is not sufficient to define the dir- 
ections of the beams uniquely. The 407 values of the 
transmission were computed twice, once with the 
crystal referred to a system of coordinates parallel to 
the crystallographic axes and a second time referred to 
a system rotated around an arbitrary direction by an 
arbitrary amount. The product of the absorption co- 
efficient and the edge of the square was taken to be 2. 

Except for one pair of directions the values of T 
agreed to within 0.1%; the mean difference was 0.02% 
of the average value of T, the standard deviation from 
the mean 0.03%. 

As a second test Twas computed for a dodecahedron 
with the same set of 407 pairs of directions; the values 
obtained were sorted according to sin 0 and it was 
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found that the value of T was within 15 Yo of the mean 
for that value of sin 0 while the value at sin 0 = 1 was 
three times that at sin 0 = 0. The values of T obtained 
were compared with those for three spheres, computed 
by a separate program (ERA 325) by numerical in- 
tegration of (1) over the sphere; the three spheres 
chosen were the circumscribed sphere, the sphere pas- 
sing through the midpoints of the edges of the dodeca- 
hedron and the inscribed sphere. The values of T for 
the dodecahedron lay always between those for the 
latter two spheres and were spread around the estim- 
ated value for the sphere with the same volume as the 
dodecahedron. That the values of T were computed 
correctly for the three spheres was checked against the 
values computed separately for 0 = 0 °, 45 °, and 90 ° and 
against those of Evans & Ekstein (1952). 

As a third test, the values of T were computed for 
the cube and the directions of the beams used as illus- 
tration in Fig. 2; the cube edge was taken to be two, 
the value of/z was varied from zero to ten. For small 
values of/x, T approaches unity; a limiting value of T 
for high absorption can be obtained as follows: the 
only significant contribution to A arises from volume 
elements near faces which are both ll and 12 and an 
approximate value for A is then 

[ (1 1)] 
A = Z" Fra exp -- lZt - -  + . . . . .  dt 

m 0 COS ¢Pm COS Ip'm 

1 Fm 

m 1 + 1 (5) 

COS (Pro COS ~m 

where the sum is to be taken over all faces both ll and 
/2; Fm is the area of such a face, q~m and ~'m the angles 
of the perpendicular to the face with the two ray dir- 
ections. 

The table below gives the values of T as a function 
of /z  both as computed by the program and as ob- 
tained from (5), T (lim). 

/t 0.001 0.01 0.1 I 2 5 10 
T 0.9983 0.9829 0.8446 0.2704 0.1337 0"0506 0.0246 
T(lim) 0.2381 0.1191 0.0476 0.0238 

Finally, as a fourth test, values of T were computed 
for a comparison with the program of Sands. Sands 
illustrates his method on a parallelogram with a/z= 
7.035, b/x = 3.015. Six series of computations were made 
by program ERA 304 for the sets of directions used 
by Sands for his parallelogram, with his values of a/x 
and b/z and with c/z= 1; the value of /z  was varied 
between 1 and 2, changing the size of the crystal ap- 
propriately to obtain always the quoted values of alL, 
b/z, and c/z. A seventh series was computed on a crystal 
referred to a different system of coordinates and values 
of the transmission were also computed by program 
ERA 341. 

The values obtained by ERA 304 agreed on the 
whole (i.e. in 959/o of all cases) within 0.19/o with the 
values given by ERA 341, but agreement with the 

values of Sands was not so good: in 59 of the 168 cases 
the relative difference exceeded 1 Yo, in 15 cases 3 ~ ,  
and in one case it was 6"3Yo. This illustrates the lack 
of reliability in methods of numerical integration when, 
as in this case, the integrand is not a smooth function 
of the argument. We have confirmed this behaviour by 
independent computations, trying to obtain the trans- 
mission by six-point or eight-point Gaussian integration 
across the area of the parallelogram, and found that 
large errors appear when the values of all and b/z ex- 
ceed a few units. 

The computation of AT from equation (3) is for 
reasons of precision carried out with six places of 
decimals. A second version, program ERA 304 A, 
has been written, in which A t  is computed with four 
places of decimals, but since there is an error of several 
units in the fourth place in the results, the precision is 
not satisfactory if the value of T is below say 0.1. 

The average time required to compute the trans- 
mission is 52 sec for a cube; 175 sec for the crystal used 
in the first test, and 400 sec for the dodecahedron; the 
corresponding figures for program ERA 304A are 45, 
155, and 350 sec. 

A computer program (ERA 426) based on the prin- 
ciples presented here has also been written in the 
FORTRAN language for the two-dimensional case. 

We are indebted to Mr G. S. D. King for having 
aroused our interest in the problem of the absorption 
correction and for helpful discussions; we are also in- 
debted to the operating staff of our IBM 1620 com- 
puter, Mrs L. De Keukel~ere, Mrs E. Provis and Mr A. 
Vosse for many hours of patient effort. We are grateful 
to the referee, Dr D. Rogers, for a careful revision of 
the text. 

Note  added in proof.  - Since the completion of the 
manuscript of this paper two further papers dealing 
with the absorption correction have appeared: Ferrari, 
Braibanti & Tiripicchio (1965) and Braibanti & Tiri- 
picchio, (1965). 
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